709 research outputs found

    Following all the rules: Intuitionistic completeness for generalised proof-theoretic validity

    Full text link
    Prawitz conjectured that the proof-theoretically valid logic is intuitionistic logic. Recent work on proof-theoretic validity has disproven this. In fact, it has been shown that proof-theoretic validity is not even closed under substitution. In this paper, we make a minor modification to the definition of proof-theoretic validity found in Prawitz (1973) and refined by Schroeder-Heister (2006). We will call the new notion generalised proof-theoretic validity and show that the logic of generalised proof-theoretic validity is intuitionistic logic

    The Barbero-Immirzi Parameter as a Scalar Field: K-Inflation from Loop Quantum Gravity?

    Full text link
    We consider a loop-quantum gravity inspired modification of general relativity, where the Holst action is generalized by making the Barbero-Immirzi (BI) parameter a scalar field, whose value could be dynamically determined. The modified theory leads to a non-zero torsion tensor that corrects the field equations through quadratic first-derivatives of the BI field. Such a correction is equivalent to general relativity in the presence of a scalar field with non-trivial kinetic energy. This stress-energy of this field is automatically covariantly conserved by its own dynamical equations of motion, thus satisfying the strong equivalence principle. Every general relativistic solution remains a solution to the modified theory for any constant value of the BI field. For arbitrary time-varying BI fields, a study of cosmological solutions reduces the scalar field stress-energy to that of a pressureless perfect fluid in a comoving reference frame, forcing the scale factor dynamics to be equivalent to those of a stiff equation of state. Upon ultraviolet completion, this model could provide a natural mechanism for k-inflation, where the role of the inflaton is played by the BI field and inflation is driven by its non-trivial kinetic energy instead of a potential.Comment: Phys. Rev. D78, 064070 (2008

    Adjustment of model parameters to estimate distribution transformers remaining lifespan

    Get PDF
    Currently, the electrical system in Argentina is working at its maximum capacity, decreasing the margin between the installed power and demanded consumption, and drastically reducing the service life of transformer substations due to overload (since the margin for summer peaks is small). The advent of the Smart Grids allows electricity distribution companies to apply data analysis techniques to manage resources more efficiently at different levels (avoiding damages, better contingency management, maintenance planning, etc.). The Smart Grids in Argentina progresses slowly due to the high costs involved. In this context, the estimation of the lifespan reduction of distribution transformers is a key tool to efficiently manage human and material resources, maximizing the lifetime of this equipment. Despite the current state of the smart grids, the electricity distribution companies can implement it using the available data. Thermal models provide guidelines for lifespan estimation, but the adjustment to particular conditions, brands, or material quality is done by adjusting parameters. In this work we propose a method to adjust the parameters of a thermal model using Genetic Algorithms, comparing the estimation values of top-oil temperature with measurements from 315 kVA distribution transformers, located in the province of Tucumán, Argentina. The results show that, despite limited data availability, the adjusted model is suitable to implement a transformer monitoring system.Fil: Jimenez, Victor Adrian. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; ArgentinaFil: Will, Adrian L. E.. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; ArgentinaFil: Gotay Sardiñas, Jorge. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; ArgentinaFil: Rodriguez, Sebastian Alberto. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentin

    Testing Local Lorentz and Position Invariance and Variation of Fundamental Constants by searching the Derivative of the Comparison Frequency Between a Cryogenic Sapphire Oscillator and Hydrogen Maser

    Full text link
    The cryogenic sapphire oscillator (CSO) at the Paris Observatory has been continuously compared to various Hydrogen Masers since 2001. The early data sets were used to test Local Lorentz Invariance in the Robertson-Mansouri-Sexl (RMS) framework by searching for sidereal modulations with respect to the Cosmic Microwave Background, and represent the best Kennedy-Thorndike experiment to date. In this work we present continuous operation over a period of greater than six years from September 2002 to December 2008 and present a more precise way to analyze the data by searching the time derivative of the comparison frequency. Due to the long-term operation we are able to search both sidereal and annual modulations. The results gives P_{KT} = \beta_{RMS}-\alpha_{RMS}-1 = -1.7(4.0) \times 10^{-8} for the sidereal and -23(10) \times 10^{-8} for the annual term, with a weighted mean of -4.8(3.7) \times 10^{-8}, a factor of 8 better than previous. Also, we analyze the data with respect to a change in gravitational potential for both diurnal and annual variations. The result gives \beta_{H-Maser} - \beta_{CSO} = -2.7(1.4) \times 10^{-4} for the annual and -6.9(4.0) \times 10^{-4} for the diurnal terms, with a weighted mean of -3.2(1.3) \times 10^{-4}. This result is two orders of magnitude better than other tests that use electromagnetic resonators. With respect to fundamental constants a limit can be provided on the variation with ambient gravitational potential and boost of a combination of the fine structure constant (\alpha), the normalized quark mass (m_q), and the electron to proton mass ratio (m_e/m_p), setting the first limit on boost dependence of order 10^{-10}.Comment: Fixed typo

    An Efficient Algorithm for Placing Electric Vehicle Charging Stations

    Get PDF
    Motivated by the increasing popularity of electric vehicles (EV) and a lack of charging stations in the road network, we study the shortest path hitting set (SPHS) problem. Roughly speaking, given an input graph G, the goal is to compute a small-size subset H of vertices of G such that by placing charging stations at vertices in H, every shortest path in G becomes EV-feasible, i.e., an EV can travel between any two vertices of G through the shortest path with a full charge. In this paper, we propose a bi-criteria approximation algorithm with running time near-linear in the size of G that has a logarithmic approximation on |H| and may require the EV to slightly deviate from the shortest path. We also present a data structure for computing an EV-feasible path between two query vertices of G

    Finance and the Earth system – exploring the links between financial actors and non-linear changes in the climate system

    Get PDF
    Financial actors and capital play a key role in extractive economic activities around the world, as well as in current efforts to avoid dangerous climate change. Here, in contrast to standard approaches in finance, sustainability and climate change, we elaborate in what ways financial actors affect key biomes around the world, and through this known "tipping elements" in the Earth system. We combine Earth system and sustainability sciences with corporate finance to develop a methodology that allows us to link financial actors to economic activities modifying biomes of key importance for stabilizing Earth's climate system. Our analysis of key owners of companies operating in the Amazon rainforest (Brazil) and boreal forests (Russia and Canada) identifies a small set of international financial actors with considerable, but as of yet unrealized, globally spanning influence. We denote these "Financial Giants", and elaborate how incentives and disincentives currently influence their potential to bolster or undermine the stability of the Earth's climate system

    Magnetically-Triggered Release of Entrapped Bioactive Proteins from Thermally Responsive Polymer-Coated Iron Oxide Nanoparticles for Stem Cell Proliferation

    Get PDF
    Nanoparticles could conceal bioactive proteins during therapeutic delivery, avoiding side effects. Superparamagnetic iron oxide nanoparticles (SPIONs) coated with a temperature-sensitive polymer were tested for protein release. We show that coated SPIONs can entrap test proteins and release them in a temperature-controlled manner in a biological system. Magnetically heating SPIONs triggered protein release at bulk solution temperatures below polymer transition. The entrapped growth factor Wnt3a was inactive until magnetically-triggered release, upon which it could increase mesenchymal stem cell proliferation. Once chemically adjusting polymer transition above body temperature this system could be used for targeted cell stimulation in model animals and humans

    Combined DNA extraction and antibody elution from filter papers for the assessment of malaria transmission intensity in epidemiological studies.

    Get PDF
    BACKGROUND: Informing and evaluating malaria control efforts relies on knowledge of local transmission dynamics. Serological and molecular tools have demonstrated great sensitivity to quantify transmission intensity in low endemic settings where the sensitivity of traditional methods is limited. Filter paper blood spots are commonly used a source of both DNA and antibodies. To enhance the operational practicability of malaria surveys, a method is presented for combined DNA extraction and antibody elution. METHODS: Filter paper blood spots were collected as part of a large cross-sectional survey in the Kenyan highlands. DNA was extracted using a saponin/chelex method. The eluate of the first wash during the DNA extraction process was used for antibody detection and compared with previously validated antibody elution procedures. Antibody elution efficiency was assessed by total IgG ELISA for malaria antigens apical membrane antigen-1 (AMA-1) and merozoite-surface protein-1 (MSP-142). The sensitivity of nested 18S rRNA and cytochrome b PCR assays and the impact of doubling filter paper material for PCR sensitivity were determined. The distribution of cell material and antibodies throughout filter paper blood spots were examined using luminescent and fluorescent reporter assays. RESULTS: Antibody levels measured after the combined antibody/DNA extraction technique were strongly correlated to those measured after standard antibody elution (p < 0.0001). Antibody levels for both AMA-1 and MSP-142 were generally slightly lower (11.3-21.4%) but age-seroprevalence patterns were indistinguishable. The proportion of parasite positive samples ranged from 12.9% to 19.2% in the different PCR assays. Despite strong agreement between outcomes of different PCR assays, none of the assays detected all parasite-positive individuals. For all assays doubling filter paper material for DNA extraction increased sensitivity. The concentration of cell and antibody material was not homogenously distributed throughout blood spots. CONCLUSION: Combined DNA extraction and antibody elution is an operationally attractive approach for high throughput assessment of cumulative malaria exposure and current infection prevalence in endemic settings. Estimates of antibody prevalence are unaffected by the combined extraction and elution procedure. The choice of target gene and the amount and source of filter paper material for DNA extraction can have a marked impact on PCR sensitivity

    Estimación de radiación solar horaria utilizando modelos empíricos y redes neuronales artificiales.

    Get PDF
    La radiación solar es uno de los parámetros más importantes para el desarrollo de aplicaciones e investigaciones relacionadas a energías renovables. Sin embargo, la adquisición de mediciones de radiación solar no siempre es posible por diferentes motivos y es necesario contar con modelos que permitan estimarla. Estos modelos en su mayoría utilizan variables climáticas difíciles de medir y que no siempre están disponibles en todos los sitios. El objetivo de este trabajo es aplicar un método para estimar radiación solar horaria, basado en redes neuronales, utilizando como variables de entrada estimaciones de radiación solar obtenidas mediante un modelo matemático simple y variables climáticas de fácil adquisición: Temperatura, Presión y Humedad. Además, para comprobar que las redes neuronales son más adecuadas en estos casos se hizo una comparativa con estimaciones realizadas con regresión lineal. Los modelos generados fueron ajustados y validados con datos provenientes de cinco estaciones meteorológicas de la provincia de Tucumán, Argentina, logrando obtener en promedio un error de 11.0% (Root Mean Squared Error) con regresión lineal y 7.84% con redes neuronales.Palabras claves: radiación solar horaria, modelos empíricos, redes neuronales feedforward, regresión lineal, energía renovabl
    corecore